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Abstract

The lead-acid battery in electric vehicles, constantly subjected to charging and discharging

process resulting into depreciation in its performance. In this study, the battery is modeled as

an RC circuit using Kalman filter method. Each element in the circuit represents certain battery

characteristic. The parameters of the model are computed using parameter estimation techniques

and sliding mode control. The results indicate that the proposed technique accurately estimates

the battery model parameters with an error of just 0.05% in the most cases. Hence this method

can be employed in battery monitoring algorithms for the online estimation of state of charge and

predicted time to run for many applications.

1 Introduction

The popularity of Hybrid-Electric Vehicles (HEV) in today’s automotive industry is because of its

higher fuel efficiency and reduced emissions of polluting gases. Since the battery forms an integral

part in the operation of the vehicle it becomes essential to know the available charge left in the battery,

how long will it be able to provide required energy, and also about the life of the battery. Researchers

around the world developed a wide range of battery models with varying degrees of complexity [1, 2].

These days with the use of lead-acid batteries becoming more critical in HEVs, on-line modeling

(adaptive) is becoming significantly important in order to compute the battery parameters, even

when the vehicle is in operation, and to keep updating the model to give a more accurate value of the

parameters [3, 4, 5]. Adaptive models, however, require few cycles to update the model and give a

more accurate model of the battery.

In this study, the lead-acid battery is simulated with Kalman [6] filter method. The estimation

parameters consist of two phases. The first phase consists of introducing step change in the input

value and the second phase is a time varying input signal.
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2 Battery Model

The adaptive model consists of resistors and capacitors to represent both the steady-state and dynamic

characteristics of the battery. Figure 1 shows the circuit diagram for Kalman filter model of battery.

Figure 1: Circuit diagram for Kalman filter model

In the above model, Rd represents the

self–discharge resistance (which is consid-

ered to be quite high and hence can be ne-

glected), capacitor Cb represents the main

charge store (i.e. an indicator of the charge

of the battery), Ri represents the resistance

of the battery terminals and inter–cell con-

nections, while Rt and Cs represent the

transient performance of the battery. The

voltage across the capacitor Cb is a suitable

indicator of the State of Charge (SOC) of

the battery while the State of Health (SOH)

can be attributed to the change in the value

of Cb.

The differential equations representing the system are given by:

dVCb

dt
=

1

Cb
Iin (1)

dVCs

dt
= − 1

CbRt
VCs +

1

Cs
Iin (2)

The terminal voltage V◦ can be calculated using the following equation:

V◦ = VCb + VCs + IinRi (3)

The above equations represent the dynamics of the battery. This relation can be used in the model of

the battery to simulate the battery at different loading conditions.

3 Results

The dynamic behavior of the lead-acid battery is studied using the above model. The input current

in the first phase is the step function and in the second phase is a time–varying function. In the

following, the results for each phase are discussed.

Estimation of Ri

This term represents the internal resistance of the battery. When there is a step change in the input,

the values of VCb and VCs can not change immediately (since capacitor opposes the changes in voltage).

Hence based on Eq. (3), the change in V◦ is totally attributed to IinRi. From the observed decrease

in the output voltage, and from the input step change, the value of Ri can be easily found. To verify

our work, the experimental data of ref. [5] is used. By substituting ∆V◦ = 0.48 V and Iin = 30 A in

Eq. (3) we have Ri = 16 mΩ which is the same value of Ri in the Ref. [5].



(a) evaluation (b) sinusoidal input a1

(c) sinusoidal input a2 (d) sinusoidal input a3

Figure 2: Simulation results

Estimation of Cb

This term represents charge–store capacitor of the battery. The voltage across Cb represents the SOC

of the battery. In the present study, not having experimental data, the value of Cb is taken to be

constant. Taking the derivative of Eq. (3) with respect to time, one obtains:

dV◦
dt

=
dVCb

dt
+

dVCs

dt
(4)

In Eq. (4), if ∆t is large then VCs → 0 because VCs is more predominant during short intervals of time

and can be neglected when the time interval under consideration is large (dVCs → 0). Substituting
dV◦
dt for dVCb

dt in Eq. (1), the value of Cb can be found. According to the data of ref. [5], dV◦
dt = ∆V◦

∆t =
∆VCb

∆t = 8.943× 10−5 V sec−1 and Iin = 30 mA. Therefore, one can find Cb = 335427.9 Farads. The

high value of Cb is because the battery stores huge amount of charge.

Estimation of Rt, Cs and VCb

In Fig. 1, Rt and Cs model the transient behavior of the battery and VCb(0) represents the initial

condition of the voltage across the capacitor Cb. In terms of battery parameters, it represents the

initial SOC. Hence, this estimation technique offers the estimation of initial SOC, so that the algorithm

does not need to store the values from prior battery cycles. The only drawback in this estimation

technique is that the input (Iin) should be a time–varying function and can not be constant.

After taking derivative of Eq. (3) using sliding model method [7] one can find:

dV◦
dt

= − 1

RtCs

(
V◦ −

1

Cb

∫ t

0
Iindt

)
+

(
1

Cs
+

1

Cb
+

Ri

RtCs

)
Iin −

1

RtCs
VCb(0) +

1

Rd
Iin

dCb

dt
(5)



In this work, we assume that Cb is constant, hence dCb
dt = 0 . Moreover, Iin is chosen as a sinusoidal

function i.e. Iin = 30 sin(60t). The first simulation is to validate the evaluation of derivative of a

function using sliding mode concept. For simplicity, denote a1 =
(

1
Cs

+ 1
Cb

+ Ri
RtCs

)
, a2 = 1

RtCs
and

a3 = 1
RtCs

VCb(0). For this simulation the assigned values for the parameters are a1 = 60, a2 = 20 and

a3 = 40. That is, we have assumed VCb(0) = 2 V and Rt = 1193.6 Ω (These values are truly based

on random assumption). Then dV◦
dt can be calculated from Eq. (5) shown in Fig. 2(a).

In the next step, the validation of estimation technique is performed. In this simulation, dV◦
dt is

obtained from the sliding mode method (Eq. 5). Then convergence of the parameters to the actual

value is checked. In the simulation, the estimated values are made to pass through a low–pass filter

block so as to eliminate the high frequency components in the calculation.

From the results in figures 2(b), 2(c), and 2(d), we see that the asymptotic parameter estimations

are a1 = 21.023, a2 = 60.0 and a3 = 39.456. Thus we find that there is an error of around 5% in the

values of the estimation. This error is mainly due to 4.5% error in the computation of dV◦
dt . These

estimation are used to compute the value of Rt = 1194.24 Ω, Cs = 0.01674 F and VCb(0) = 2 V giving

a respective error of 0.048%, 0.0% and 0.01%. Hence, we see that the errors significantly get reduced

in the estimation of Rt and Cs. Consequently, the proposed estimation technique is quite accurate in

the estimation of battery parameters such as SOC (related to Cb) for sinusoidal current input.

4 Conclusions

With the rising importance of the lead-acid batteries, both in the automotive industry and the energy

sector, it is of critical importance to develop more accurate models of the battery. This paper presents

an adaptive model of the battery where the inherent battery parameters are estimated using only

the input–output relations of the battery. The proposed estimation technique was employed for the

estimation of model parameters. The estimation technique was implemented for sinusoidal current

input. From the estimation results, the proposed technique accurately estimates the battery model

parameters with an error of just 0.05of the cases. Hence this method can be employed in battery

monitoring algorithms for the online estimation of state of charge and predicted time to run for many

applications.
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